C114门户论坛百科APPEN| 举报 切换到宽版

亚星游戏官网

 找回密码
 注册

只需一步,快速开始

短信验证,便捷登录

搜索

军衔等级:

亚星游戏官网-yaxin222  少将

注册:2015-1-2880
发表于 2024-2-22 09:57:26 |显示全部楼层
2月22日,GOOGLE在官网宣布,开源大语言模型Gemma。

Gemma与GOOGLE最新发布的Gemini 使用了同一架构,有20亿、70亿两种参数,每种参数都有预训练和指令调优两个版本。

根据GOOGLE公布的测试显示,在MMLU、BBH、GSM8K等主流测试平台中,其70亿模型在数学、推理、代码的能力超过Llama-2的70亿和130亿,成为最强小参数的类ChatGPT模型。

目前,Gemma可以商用,并且普通笔记本、台式机就能跑,无需耗费巨大的AI算力矩阵。


Kaggle地址:https://www.kaggle.com/models/google/gemma/code/


huggingface地址:https://huggingface.co/models?search=google/gemma


技术报告:https://goo.gle/GemmaReport


1.png


GOOGLE作为贡献出Transformers、TensorFlow、BERT、T5、JAX、AlphaFold等一系列改变世界AI发展的宗师级大师,在生成式AI领域却一直落后于OpenAI。

不仅如此,开源领域还打不过类ChatGPT开源鼻祖Meta的Llama系列。痛定思痛之后,GOOGLE决定重新加入开源阵营,以抢夺开发者和用户。

Gemma简单先容

GOOGLE表示,Gemma之所以性能如此强悍,主要是使用了与Gemini相同的技术架构。

更详细的开发者指南:https://ai.google.dev/gemma/docs ... ign=quickstart-docu

Gemini的基础架构建立在Transformer编码器结构之上,通过多层自注意力和前馈神经网络来建模序列依赖性。不同的是Gemini采用了多查询注意力机制,可处理超复杂长文本。

2.png


具体来说,模型首先将输入序列的每个位置编码成多组查询向量。然后,将这些查询向量并行地与键值对进行批量注意力运算,得到多个注意力结果。

除了开源模型权重,GOOGLE还推出Responsible Generative AI Toolkit等一系列工具,为使用Gemma提供更安全的AI应用程序提供引导。

目前,Gemma开放了两个版本:预训练,该版本未针对 Gemma 核心数据训练集以外的任何特定任务或指令进行训练;指令微调,通过人类语言互动进行训练,可以响应对话输入,类似ChatGPT聊天机器人。

跨框架、工具和硬件,对Gemma进行优化

开发者可以根据自己的数据微调 Gemma 模型,以适应特定的应用程序需求,例如,生成摘要/文本或检索增强生成 (RAG)等。Gemma 支撑以下多种工具和系统:

多框架工具:可跨多框架 Keras 3.0、本机 PyTorch、JAX 和 Hugging Face Transformers 进行推理和微调。

跨设备兼容性:Gemma可以跨多种设备类型运行,包括笔记本电脑、台式机、物联网、移动设备和云,从而实现广泛的 AI 功能。

3.png


高级硬件平台:GOOGLE与NVIDIA合作,针对 NVIDIA GPU 优化 Gemma模型,从数据中心到云端再到本地RTX AI PC,提供行业领先的性能并与尖端AI技术集成。

针对 谷歌 Cloud 进行了优化:Vertex AI 提供广泛的 MLOps 工具集,具有一系列调整选项,并可使用内置推理优化功能进行一键式部署。

高级定制功能可通过完全管理的顶点人工智能工具或自我管理的GKE 实现,包括部署到 GPU、TPU 和 CPU 平台上具有成本效益的基础设施。

Gemma性能测试

GOOGLE在MMLU、BBH、GSM8K等主流测试平台中,用Gemma 70亿模型与Llama-2、Mistral在数学、推理、代码等方面进行了深度测试。

Gemma的标准学术基准测试平均分数都高于同规模的Llama 2和Mistral模型。甚至在一些关键能力方面,高于Llama-2 130亿参数模型。

4.png


也就是说,Gemma是一款参数很小,性能却异常强悍的大模型。

举报本楼

本帖有 2 个回帖,您需要登录后才能浏览 登录 | 注册
您需要登录后才可以回帖 登录 | 注册 |

手机版|C114 ( 沪ICP备12002291号-1 )|联系大家 |网站地图  

GMT+8, 2024-11-5 16:23 , Processed in 0.157222 second(s), 19 queries , Gzip On.

Copyright © 1999-2023 C114 All Rights Reserved

Discuz Licensed

回顶部
XML 地图 | Sitemap 地图