C114门户论坛百科APPEN| 举报 切换到宽版

亚星游戏官网

 找回密码
 注册

只需一步,快速开始

短信验证,便捷登录

搜索
查看: 14679|回复: 22

[话题讨论] 学习通信要掌握哪些常识 [复制链接]

军衔等级:

亚星游戏官网-yaxin222  新兵

注册:2009-11-17
发表于 2015-4-27 09:13:25 |显示全部楼层
1微积分
微积分的创立极限数列的极限函数的极限你讨厌公式吗?连续导数微分积分微积分基本定理你严密了吗?积分中值定理稍微等一等第一基本定理的证明微分中值定理第二基本定理的证明泰勒级数牛顿,微积分及中西哲学
2信号通过线性系统
离散系统与连续系统离散信号与离散系统线性系统时/移不变系统离散Delta信号和离散卷积连续Delta函数连续卷积卷积的性质
3傅立叶级数1
三角形式的傅立叶级数如何求傅立叶系数为什么正弦信号这么重要?什么是频率?
4复变函数
从实数到复数复数的四则运算虚数i是怎样的一个数?复指数函数1复指数函数2, 欧拉公式
5傅立叶分析2
复指数形式的傅立叶级数理解负频率 傅立叶变换理解谱密度傅立叶变换存在的条件傅立叶变换的性质:对称性,线性奇偶虚实性尺度变换时移特性,频移特性典型函数的傅立叶变换:矩形函数, 冲击函数周期函数卷积定理线性系统的频率特性离散傅立叶变换离散序列的连续傅立叶变换离散傅立叶变换的性质:对称性,线性虚实奇偶性循环移位特性,频移特性循环卷积循环卷积定理
6: 采样,通向数字世界的第一步  
采样的数学表达周期矩形脉冲采样周期冲击脉冲采样采样定理用采样信号重构原信号频域采样定理乃奎斯特定律能被突破吗?
7:线性空间理论
数学之道, 线性空间的定义度量空间赋范空间内积空间正交与正交基再看傅立叶变换
8:信号的谱分析
一个简单的信号, 频率分辨率泄漏效应
9:基本通信链路
为什么需要调制?, 调制-频谱搬移相干解调非相干解调,载波恢复锁相环平方环Costas双边带信号单边带信号Hilbert变换单边带信号的发射与接收探究竟,起怀疑IQ调制解调IQ信号的复数表达复数基带信号与复信道数字调制乃奎斯特第一准则脉冲成形滤波器(矩形,Sinc)升余弦滚降滤波器几种数字调制方式(ASK,PSK,QAM)连续相位调制非连续相位频移键控连续相位频移键控最小频移键控MSKGMSK调制从另外一个视角看MSK数字调制之华山论剑
10: 概率论与随机过程               
什么是概率联合事件和联合概率条件概率随机变量随机变量的统计量平均分布和高斯分布中心极限定理联合分布条件概率分布联合矩n维高斯分布随机过程和平稳随机过程复随机过程功率密度谱 循环平稳过程各态历经过程随机过程通过线性时不变系统随机过程的采样定理离散随机过程和系统典型随机过程闲话概率论
11: AWGN信道的最佳接收机
亩产估计问题, 离散观测的最大似然准则连续观测的最大似然准则最大后验概率准则匹配滤波器(一)(二)(三)(四)数字解调2PAM的误码率(一)(二)载波恢复和符号同步符号同步无判决反馈的符号同步(一)(二)(三)
12, 无线信道
路径衰落(一),(二)阴影衰落多径效应与快衰落瑞利衰落时间选择性衰落和频率选择性衰落,小结
13, 均衡技术  
什么是均衡横向抽头滤波器离散卷积的矩阵表达(一),() 匹配滤波器(一)(二)迫零算法MMSE算法MFZFMMSE算法的关系ZFMMSE的快速算法时域均衡频域均衡(一)(二,线卷积转化为圆卷积)(三,对角化和频域MMSE信道估计的系统方程导频设计问题病态问题病态问题的平面说明导频设计优化小结
14, 多址技术     FDMATDMACDMA扩频增益扩频增益是伪增益正交码Rake接收机(一)(二)CDMA的多用户模型和自干扰特性远近效应功率控制CDMA的特性时域多用户检测频域多用户检测(一)-转化为圆卷积(二)频域对角化(三)一个引理(四)对角化-继续(五)频域MMSE(六)相关矩阵和匹配滤波的计算(七)利用信道的相关性降低运算量,(八)算法框图(九)仿真结果CDMA小结OFDMA, OFDM也是一种CDMAOFDM如何克服多径效应循环前缀OFDM的多用户干扰OFDM导频设计和信道估计SC-FDMA, SC_FDMA的峰均比为什么低OFDM领域的核心专利(一)() 用一个IFFT承载多个载波() CA的核心技术多址技术小结

举报本楼

本帖有 22 个回帖,您需要登录后才能浏览 登录 | 注册
您需要登录后才可以回帖 登录 | 注册 |

手机版|C114 ( 沪ICP备12002291号-1 )|联系大家 |网站地图  

GMT+8, 2024-11-17 21:31 , Processed in 0.769494 second(s), 15 queries , Gzip On.

Copyright © 1999-2023 C114 All Rights Reserved

Discuz Licensed

回顶部
XML 地图 | Sitemap 地图